NECA 413

Standard for Installing and Maintaining Electric Vehicle Supply Equipment (EVSE)

Recirculation Ballot
August 2011

National Electrical Installation Standards, NEIS, and the NEIS logo are trademarks of the National Electrical Contractors Association
Table of Contents

Foreword

1. Scope
 1.1 Products and Applications Included
 1.2 Products and Applications Excluded
 1.3 Regulatory and Other Requirements

2. Definitions

3. Overview

4. Safety
 4.1 General
 4.2 Installations Requiring Ventilation
 4.3 Safety Interlocks
 4.3.1 Connection Interlock
 4.3.2 Charge Circuit Interrupter Device
 4.3.3 Automatic De-Energization Device
 4.3.4 Ventilation Interlocks

5. Pre-Installation Considerations
 5.1 Battery Operating and Charging Temperature Limitations
 5.2 Smart Chargers
 5.3 Charging Power
 5.3.1 AC Level 1 Charging
 5.3.2 AC Level 2 Charging
 5.3.3 Fast Charging DC
 5.4 Conductive and Inductive EV Charger Technologies
 5.4.1 Conductive Charging
 5.4.2 Inductive Technologies
 5.5 Communication and Data Requirements
 5.5.1 Communication Between the EV and EVSE
 5.5.2 Communication Between the EV and the Power Supplier
 5.6 EVSE Equipment and Siting Requirements
 5.6.1 Electrical Load Calculations
 5.6.2 Site Selection and Preparation
 5.6.3 Commercial Fleet Lots
 5.7 Electric Utility Interconnection Requirements

6. Installation
 6.1 General
6.1.1 Free Standing EVSE ... 6.1.2 RFID or Antenna and Parking Bumper or Wheelstop Installation
6.2 EVSE Start-up and Commissioning

7. Maintenance ... 7.1 General ...

Annex A: Product Regulations, Codes and Standards......................
Annex B: Reference Standards..
Foreword

National Electrical Installation Standards™ are designed to improve communication among specifiers, purchasers, and suppliers of electrical construction services. They define a minimum baseline of quality and workmanship for installing electrical products and systems. NEIS® are intended to be referenced in contract documents for electrical construction projects. The following language is recommended:

Electric vehicle supply equipment shall be installed and maintained in accordance with NECA 413-201x, Standard for Installing and Maintaining Electric Vehicle Supply Equipment (EVSE) (ANSI).

Use of NEIS is voluntary, and the National Electrical Contractors Association assumes no obligation or liability to users of this publication. Existence of a standard shall not preclude any member or non-member of NECA from specifying or using alternate construction methods permitted by applicable regulations.

This publication is intended to comply with the National Electrical Code (NEC). Because they are quality standards, NEIS may in some instances go beyond the minimum safety requirements of the NEC. It is the responsibility of users of this publication to comply with state and local electrical codes and Federal and state OSHA safety regulations as well as to follow manufacturers’ installation instructions when installing electrical products and systems.

Suggestions for revisions and improvements to this standard are welcome. They should be addressed to:

NECA Standards & Safety
3 Bethesda Metro Center, Suite 1100
Bethesda, MD 20814
(301) 215-4546
(301) 215-4500 Fax
www.neca-neis.org
neis@necanet.org

To purchase National Electrical Installation Standards, contact the NECA Order Desk at (301) 215-4504 tel, (301) 215-4500 fax, or orderdesk@necanet.org. NEIS can also be purchased in .pdf download format at www.neca-neis.org/standards.

Copyright © 201x, National Electrical Contractors Association. All rights reserved. Unauthorized reproduction prohibited.

National Electrical Installation Standards, NEIS, and the NEIS logo are registered trademarks of the National Electrical Contractors Association. National Electrical Code and NEC are
registered trademarks of the National Fire Protection Association, Quincy, MA.
1. **Scope**

This standard describes the procedures for installing and maintaining AC Level 1, AC Level 2 and fast charging DC (initially known in the industry as AC Level 3) Electric Vehicle Supply Equipment (EVSE).

![Figure 1.1.1 Electric vehicle supply equipment Courtesy of NECA Copyright Rob Colgan](image1)

1.1 **Products and Applications Included**

This standard covers Electric Vehicle Supply Equipment (EVSE) that complies with applicable local, state and federal regulations, codes and standards for AC Level 1, AC Level 2 and fast charging DC EVSE intended for transferring energy between premises wiring systems and electric vehicles (EVs).

![Figure 1.1.2 Photo showing typical level 1 electric vehicle supply equipment (EVSE)](image2)
1.2 Products and Applications Excluded

This standard does not apply to other than Code compliant AC Level 1, AC Level 2 and fast charging DC EVSE, as well as to off-road, self-propelled electric vehicles, such as industrial trucks, hoists, lifts, transports, golf carts, airline ground support equipment, tractors, boats, and the like.

1.3 Regulatory and Other Requirements

a) All information in this publication is intended to conform to the National Electrical Code® (ANSI/NFPA Standard 70). Installers should always follow the NEC®, applicable state and local codes, and manufacturer's instructions when installing and maintaining Electric Vehicle Supply Equipment (EVSE).

b) Only qualified persons as defined in the NEC familiar with the construction and operation of Electric Vehicle Supply Equipment (EVSE) should perform the technical work described in this publication. Administrative functions and other non-technical tasks can be performed under the supervision of a qualified person. All work should be performed in accordance with NFPA 70E, Standard for Electrical Safety in the Workplace, in addition to applicable OSHA regulations.

c) General requirements for installing electrical products and systems are described in NECA 1-2011, Standard Practices for Good Workmanship in Electrical Construction (ANSI). Other National Electrical Installation Standards provide additional guidance for installing particular types of electrical products and
systems. A complete list of NEIS is provided in Annex A.
2. Definitions

AC Level 1 Charging. Electric vehicle (EV) charging that employs cord-and-plug connected portable electric vehicle supply equipment (EVSE). AC Level 1 EVSE is rated single-phase, nominal 120VAC, with either a 15A or 20A configuration, and is suitable for connection to NEMA 5-15R or 5-20R receptacles.

AC Level 2 Charging. AC Level 2 EVSE is rated single-phase, nominal 208VAC or 240VAC, 80A maximum, with branch circuit overcurrent protection required. Electric vehicle (EV) charging for indoor use could be cord and plug connected or permanently wired electric vehicle supply equipment (EVSE) operated at a fixed or portable location used specifically for EV charging. An AC Level 2 system may be cord and plug connected if identified as meeting the requirements of NEC 625.

Authority Having Jurisdiction (AHJ). An organization, office or individual responsible for enforcing the requirements of a code or standard, or for approving equipment, materials, an installation, or a procedure.

Battery. An electrochemical device that transforms stored chemical energy into electric energy during discharge. Batteries for electric vehicles (EVs) are electrically connected in a series and/or parallel arrangement to provide the voltage, power, capacity and packaging requirements of the EV. Also see Battery Pack and Battery System.

Battery Electric Vehicle (BEV). An automotive-type vehicle that is powered solely by the battery energy storage system available on-board the vehicle. Since there is no other significant energy source, BEV batteries are typically an order of magnitude larger than the batteries in hybrid or plug-in hybrid electric vehicles (PHEV). Also see Plug-in Hybrid Electric Vehicle (PHEV).

Battery Pack. A group of batteries connected in serial or parallel arrangement, selected and configured as a unit to meet the voltage, power, capacity and packaging requirements of the electric vehicle (EV).

Battery System. The electric vehicle (EV) battery pack and battery support equipment, such as thermal management and battery monitoring and controls.

Capacity. The total number of ampere hours (Ah) that can be withdrawn from a fully charged cell or battery for a specific set of operating conditions, including discharge rate, temperature, age, stand time, and discharge termination criteria.

Charge Circuit Interrupting Device (CCID). A protective device that continuously monitors the current differential between all current-carrying conductors in a grounded system and opens the circuit if the differential current exceeds a preset threshold.
Charger. An electrical device that converts alternating-current (AC) energy to a regulated direct-current (DC) energy for replenishing the energy of an energy storage device, such as a battery, and for operating other vehicle electrical systems.

Continuous Load. A load where the maximum current is expected to continue for 3 hours or more.

Electric Vehicle (EV). An automotive-type vehicle for on-road use, such as passenger automobiles, buses, trucks, vans, neighborhood electric vehicles, electric motorcycles, and the like, primarily powered by an electric motor that draws current from a rechargeable storage battery, fuel cell, photovoltaic array, or other source of electric current. Plug-in hybrid electric vehicles (PHEV) are considered electric vehicles. For the purpose of this Standard, off-road, self-propelled electric vehicles, such as industrial trucks, hoists, lifts, transports, golf carts, airline ground support equipment, tractors, boats, and the like, are not included.

Electric Vehicle (EV) Connector. A device that, by insertion into an electric vehicle (EV) inlet, establishes an electrical connection to the EV for the purpose of energy transfer and information exchange. This device is part of the EV coupler.

Figure 2.1 EV connector J1772™ Courtesy of General Motors

Electric Vehicle (EV) Cord. The off-board cable containing the conductors to connect the electric vehicle (EV) plug with the EV power controller to transfer energy between the electric vehicle supply equipment (EVSE) and the EV, and to provide for communications during energy transfer.

Electric Vehicle (EV) Coupler. A mating electric vehicle (EV) inlet and EV connector set.

Electric Vehicle (EV) Inlet. The device on the electric vehicle (EV) into which the EV connector is inserted for energy transfer and information exchange. This device is part of
the EV coupler. For the purposes of this Standard, the EV inlet is considered to be part of the EV and not part of the electric vehicle supply equipment (EVSE).

Electric Vehicle (EV) Nonvented Storage Battery. A hermetically sealed battery comprised of one or more rechargeable electrochemical cells that has no provision for the release of excessive gas pressure, or for the addition of water or electrolyte, or for external measurements of electrolyte specific gravity.

Electric Vehicle Supply Equipment (EVSE). The conductors, including the ungrounded, grounded, and equipment grounding conductors and the electric vehicle (EV) connectors, attachment plugs, and all other fittings, devices, power outlets, or apparatus installed specifically for the purpose of transferring energy between the premises wiring and the EV.

![Figure 2.1.1 Typical electric vehicle supply equipment (Level 2 shown) Courtesy of Eaton Corporation](image-url)

Fast Charging DC. Electric vehicle (EV) charging that employs permanently wired electric vehicle supply equipment (EVSE) that is operated at a fixed location and is used specifically for EV charging. As of the date of this publication, fast charging DC EVSE ratings are yet to be determined, but can be considered any single-phase voltage or current rating higher than that of AC Level 2, or any three-phase supply voltage configuration. Fast charging DC was initially known in the industry as AC Level 3 charging.

Hybrid. See Plug-in Hybrid Electric Vehicle (PHEV).
Inductive Charging System. A charging system that transfers alternating current (AC) energy across a take-apart transformer and rectifies that energy into direct current (DC) energy for the purpose of transferring energy between the premises wiring system and electric vehicle (EV).

National Fire Protection Association (NFPA). Professional organization that promotes the science and improves the methods of fire protection and prevention, electrical safety, and other safety related goals. NFPA also develops consensus codes and standards.

Non-Continuous Load. A load where the maximum current is expected to continue for less than 3 hours.

Off-Board Charger. A charger with control and monitoring capabilities built into the electric vehicle supply equipment (EVSE), not on the electric vehicle (EV).

On-Board Charger. A charger with control and monitoring capabilities built into the electric vehicle (EV), not in the electric vehicle supply equipment (EVSE).

Personnel Protection System. A system of personnel protection devices and construction features that, when used together, provides protection against electric shock of personnel.

Plug-in Hybrid Electric Vehicle (PHEV). A type of electric vehicle (EV) intended for on-road use with the ability to store and use off-vehicle electrical energy in the rechargeable energy storage system, and having a second source of motive power.

Range. The maximum distance that an electric vehicle (EV) can travel on a single battery charge over a specified driving cycle to the battery manufacturer’s recommended maximum discharge level.

Rechargeable Energy Storage System. Any power source that has the capability to be charged and discharged.

3. Overview

Electric vehicles (EVs) are automotive-type vehicles designed for on-road use, such as passenger automobiles, buses, trucks, vans, neighborhood electric vehicles, electric motorcycles, and the like, primarily powered by an electric motor that draws current from a rechargeable storage battery, fuel cell, photovoltaic array, or other source of electric current.

Historically, EVs have been specialty electric vehicles, such as forklifts and golf carts. Modern electric vehicles include passenger cars, buses and delivery trucks. The range of an EV, or the distance that the EV can travel before recharging, varies with the vehicle...
and is dependent upon the battery system and the hybrid nature of the vehicle if it is a plug-in hybrid electric vehicle.

Battery systems and battery technology have improved in recent years. Modern EV batteries do not emit hydrogen gas and can be safely charged in a non-ventilated, indoor environment.

EV batteries are located on-board the vehicle. Energy is transferred between the onboard battery and the premises wiring system through the inlet, which is considered part of the vehicle. The connector is the device that, by insertion into an EV inlet, establishes an electrical connection to the EV for the purpose of transferring energy and exchanging information. The inlet and connector together are referred to as the coupler.

The electric vehicle supply equipment (EVSE) consists of the cords, connector, attachment plugs, and all other fittings, devices, power outlets, or apparatus installed specifically for the purpose of transferring energy between the premises wiring and the EV.

There are currently three levels of EVSE, AC Levels 1 and 2 and fast charging DC, based on the operating voltage and the peak power drawn during energy transfer, with AC Level 1 operating on single-phase 120V, AC Level 2 operating on single-phase 208V or 240V, and fast charging DC operating on single-phase voltages higher than AC Level 2, or any three-phase supply voltage configuration.

AC Level 1 charging typically takes between 16 and 20 hours to complete, AC Level 2 charging typically takes between 4 and 6 hours to complete, and fast charging DC typically takes less than one hour to complete.

For AC Level 1 and 2, the conversion of the AC power to the DC power required for battery charging occurs in the EV’s on-board charger. For fast charging DC, the conversion from AC to DC power occurs off-board the EV, so that DC power is delivered directly to the vehicle.

EV battery charging times vary greatly and depend upon the age and capacity of the battery plant, the state of charge of the battery at the time of charging, and the available capacity of the EVSE at the time of charging.

As of the date of this publication, industry standards-writing bodies are considering defining the ratings of fast charging DC charging, along with defining lower levels of DC charging.

Installing AC Level 1 or 2 or fast charging DC is a decision based on the type of electric vehicle selected and is typically determined at a very early stage of the EVSE installation process.
4. Safety

4.1 General

Only qualified persons familiar with the construction and operation of Electric Vehicle Supply Equipment (EVSE) should perform the technical work described in this Standard. See the definitions of the term Qualified Person as provided in Articles 100 of the NEC and NFPA 70E.

Before installing, cleaning, inspecting, testing, or performing maintenance on EVSE, electrically isolate EVSE in accordance with established procedures. De-energize, lock-out, tag-out and re-energized equipment in accordance with OSHA 1910.333(b) and NFPA 70E to establish an electrically safe work condition.

Consider all ungrounded and grounded metal parts of equipment and devices to be energized at the highest voltage to which they are exposed unless they are tested and are positively known by testing to be de-energized. Failure to follow these procedures may result in property damage, personal injury or death.

Turn off or disconnect the power supplying EVSE before beginning work. Contact the local electric utility company when required to disconnect power to the EVSE. Keep in mind that the line side of the main disconnecting means remains energized unless power is disconnected upstream from the main disconnecting means.

Do not work on energized equipment. Using established safety procedures, guard energized conductors and equipment in close proximity to work.

Use appropriate Personal Protective Equipment (PPE) and established safety procedures when working on or near energized electrical equipment, anticipating that equipment will fail when operated.

Use care in opening and closing compartment doors while the EVSE is energized. Connections and conductors may be exposed and within reach of compartment openings.

The EV itself may present a source of energy when connected to the EVSE. Disconnect the EV when working on or near EVSE components.

Perform preliminary inspections and tests prior to beginning work to determine existing conditions. Check existing conditions against available record documents. Visually verify all connections to equipment. Keep in mind that transposed underground cables may be connected to different terminals than expected.

Resolve discrepancies between installed conditions and electrical drawings. Have the drawings corrected, if required, to match actual field conditions. Provide warning labels on equipment, cables, etc., where necessary to indicate unexpected and potentially hazardous conditions.
Maintain as much distance as practical from equipment and devices that may arc during operation or handling, but not less than the clearances specified in the National Electrical Code.

De-energize EVSE by opening source switching devices. Verify by testing that desired cables and equipment are de-energized. Secure circuit breakers and switches in the “open” position with locks and tags.

Test EVSE to confirm that it is de-energized. Test conductors and equipment at sources and at EVSE to confirm that it is de-energized.

Remove locks and tags only after work is complete and tested, and all personnel are clear of the area.

Before applying power to the system, check all components for damage, and check to ensure that there are no loose or disconnected wires, cables or mechanical connections.

The EVSE connector includes a switch that operates the latch securing it to the EV. Depressing this switch signals the EV to stop charging, opening the circuit and making the disconnection non-powered and safe, while also releasing the latch securing the connector to the EV.

In the event of an equipment malfunction, only qualified personnel may disassemble EVSE. Contact the manufacturer for recommendations. Keep in mind that unauthorized servicing or incorrect reassembly can result in a significant risk of property damage, personal injury or death, and may void the product warranty.

4.2 Installations Requiring Ventilation

The possibility of invoking the ventilation requirements or hazardous environment requirements of the NEC Article 625 exists when installing EVSE indoors. When the EVSE connector makes contact with the EV inlet, the pilot signal from the vehicle will identify whether or not the EV battery system requires ventilation. Suitable EVSE contains controls to turn on the ventilation system when required and also to stop charging should that ventilation system fail.

The NEC identifies three classes of hazardous locations in Articles 500 through 516. Class I locations are those in which flammable gases, flammable liquid-produced vapors or combustible liquid-produced vapors are or may be present in the air in quantities sufficient to produce explosive or ignitable mixtures. Class II locations are those that are hazardous because of the presence of combustible dusts. Class III locations are those that are hazardous because of the presence of easily ignitable fibers or where materials producing combustible flyings are handled, manufactured, or used, but in which such
fibers/flyings are not likely to be in suspension in the air in quantities sufficient to produce ignitable mixtures.

The need for ventilation in indoor charging facilities is increasingly rare. Few contemporary batteries are flooded lead-acid or nickel-iron batteries that require ventilation during charging. The current industry battery standard is sealed lead-acid, nickel-metal hydride (NiMH), or Lithium batteries. In sealed lead acid batteries, hydrogen and oxygen recombine into water, eliminating the ventilation requirement.

In the few circumstances where non-sealed batteries are used, electrolysis (the separation of water into hydrogen and oxygen) can occur when a flooded lead-acid or a nickel-iron battery is fully charged and additional current is added to the battery.

Hydrogen gas is potentially explosive over a wide range of concentrations. Ventilation is required when flooded batteries are charged in enclosed spaces. Since hydrogen is lighter than air and rises, ventilation must be provided above the EV if it is charged in an enclosed space. The lower flammability limit (LFL) of hydrogen in air is a 4% mixture by volume. Locations are classified as hazardous wherever 25% of the hydrogen LFL (a 1% hydrogen/air mixture) is exceeded.

When a ventilation system is required in accordance with NEC Article 625 for EVSE installed indoors, receptacles and power outlets must be marked “Ventilation Required.” When ventilation is not required or provided, the EVSE, receptacles, and power outlets must be clearly marked “Ventilation Not Required.”

Ventilation systems should be designed and sized in accordance with manufacturer recommendations and applicable codes.

Required ventilation equipment includes both supply and mechanical exhaust which intakes from, and exhausts directly to, the outdoors. The passive intake vent should be placed low on one side of the enclosed space, and the exhaust fan in the ceiling on the other side of the enclosed space. The ventilation system must be interlocked with the EVSE to turn on when the charging cycle starts, and should continue to operate at least five minutes after the charging cycle is completed.

Feeder and branch circuit conductors and overcurrent protective devices for EVSE and for ventilation systems must be sized not less than 125% of the maximum current in accordance with NEC requirements for supplying a continuous load.

4.3 Safety Interlocks

Because of the duration of the EV charging cycle, safety interlocks are necessary to protect people and equipment during unattended operation. The SAE J1772™-compliant conductive charge coupler contains contacts that enable communication, interlocking and control between the EVSE and the EV.
There are four main safety devices incorporated into modern EVSE for safe and reliable operation, namely the connection interlock, charge circuit interrupt device (i.e., ground-fault protection or service ground monitor), automatic de-energization device, and ventilation interlock. While each device serves a specific function, they work together as a system to provide a safe and seamless charging event.

The systems are now AC Level 1 and 2, and fast charging DC. AC Level 1 includes the GFCI/CCID in the cord according to UL 2231 since this is a mobile EVSE. The other levels include the same GFCI/CCID protection, but the EVSE are premise mounted units and not mobile.

4.3.1 Connection Interlock

The connection interlock is required by NEC Article 625 to ensure adequate plug and socket (connector and inlet) contact pressure before energizing, and to prevent energization when the connector is not connected to the inlet. The connection interlock is a device that provides for a dead interface between the EVSE and the EV.

When the EV connector is not connected to the vehicle, the connection interlock prevents power from being applied to the cable or EV connector. When the EV connector is connected to the vehicle, a signal indicates that the EV connector is positively connected to the EV inlet, and the EVSE performs a systems check. Subsequent to confirming system integrity, the EVSE commands/controls energy to flow through the cable and connector to the EV.

4.3.2 Charge Circuit Interrupter Device

A Personal Protection System to provide protection against electric shock of personnel is required for all charging levels in accordance with NEC Article 625. The personnel protection systems for EVSE use ground or isolation monitoring, a circuit interrupting device, and basic, double, or reinforced insulation. Product safety standards developed by UL specify what combinations of these devices EV and EVSE manufacturers can use to meet personnel protection requirements, allowing for a systems approach to providing protection versus a device-only approach.

4.3.3 Automatic De-Energization Device

The automatic de-energization device is required in accordance with NEC Article 625. The automatic de-energization device is a mechanism that will deenergize the EVSE if a strain occurs to the cable or EV connector that could result in live parts being exposed. An example would be where a parked EV connected to EVSE accidentally rolls back, resulting in strain to the cable and the potential disconnection of the connector from the
inlet during the charging cycle. The automatic de-energization device will abort the charging cycle before the cable or EV connector becomes disconnected during the charging cycle.

4.3.4 Ventilation Interlocks

Ventilation interlocks are required in accordance with NEC Article 625 to avoid creating a situation where hydrogen gas can collect in an enclosed space, such as a garage, during the EV charging cycle. With conventional starter batteries used in gasoline vehicles and some conversion EVs, hydrogen gas can be generated during charging. In EVs marketed by major automobile manufacturers, modern batteries are used that do not generate hydrogen gas. In short, batteries that do not require ventilation have become the rule, and batteries that require ventilation have become the exception.

The ventilation interlock performs three functions in order to meet the requirements of Article 62 and pertinent sections of state and locally adopted building codes. First, the EVSE queries the EV to determine if ventilation is required during charging. Second, the EVSE determines whether ventilation is available. Finally, if ventilation is available, the EVSE operates the ventilation during and after the charging process cycle in accordance with applicable codes.

5. Pre-Installation Considerations

5.1 Battery Operating and Charging Temperature Limitations

Battery sizing must take into account whether the batteries will be exposed to temperature extremes. Battery capacity, charging voltage, and life expectancy are temperature dependent. Battery capacity, or how many amp-hours a battery can store, is reduced as temperature decreases, and increased as temperature increases.

Battery charging voltage is also temperature dependent, with higher charging voltage needed at lower temperatures. The vehicle controls the charging system temperature that is required for the charge cycle. The EVSE merely delivers AC or DC energy as requested from the EV.

Battery life expectancy is reduced as temperature increases, but batteries tend to average out low and high temperature operation to meet the average life expectancy. Continuous operation at elevated temperatures is a concern.

5.2 Smart Chargers
EVSE can be programmed to charge vehicles during periods of lower demand and during periods of lower energy costs. This benefits all electricity users by encouraging charging during offpeak demand periods when generation capacity exceeds demand.

Smart EVSE incorporates software algorithms that allow charging vehicles to be grouped as a single power resource that can be controlled and managed by the energy provider. Smart EVSE permits EVs to be controlled as an energy resource, using EVs as a source of distributed generation.

Smart charging requests are transmitted over a variety of secure, two-way communication methods, and enable EVs to be controlled for:

- **Load shifting.** Charging can be performed during other than peak load periods by establishing time-based charging windows during which energy is delivered to participating EVs.
- **Load shaping.** By integrating a variety of real-time signals, utilities are able to dynamically control the EV charging cycle to achieve specific objectives or mitigate location specific and system-wide grid stress.
- **Ancillary services.** In real-time, vehicle charging load can be adaptively increased or reduced by the electric utility to provide system regulation and spinning reserves.
- **Vehicle-to-Grid (V2G).** The two-way flow of power between the grid and EVs can be managed, returning energy to the grid when needed.

5.3 Charging Power

Charging times will vary, based on battery size and level of electricity at the charging station. BEV's have a large battery requiring higher power charging to maintain a reasonable charge time. PHEV's have a smaller battery and an auxiliary gas or diesel engine. The smaller battery in the PHEV requires lower power charging to maintain a reasonable charge time, and can be efficiently charged using a standard 120-volt circuit (AC Level 1 charging). BEV's require at least a 208V or 240V circuit (AC Level 2 charging) for faster charging.

Commercial fleet charge stations will likely include multiple charge locations, and may include more than one charge level. The additional electric load from EVSE will need to be included in load calculations when sizing service entrance equipment for a facility.

5.3.1 AC Level 1 Charging

AC Level 1 charging typically takes between 16 and 20 hours to complete because of the relatively limited amount of power that can be delivered over a single-phase 120V circuit. AC Level 1 systems were developed with the intention of connecting to common 125V NEMA 5-15R or 5-20R receptacles, although the SAE J1772™ connector and a Personal
Protection System must be used. AC Level 1 systems are recommended in situations where AC Level 2 systems are not available. When using AC Level 1 charging, a dedicated branch circuit is recommended to prevent nuisance overcurrent protective device operation.

![Diagram of Level 1 branch circuit requirements]

Figure 5.3.1 Level 1 individual branch circuit requirements

5.3.2 AC Level 2 Charging

AC Level 2 charging uses single-phase 208V or 240V circuits and typically takes between 4 and 6 hours to complete. AC Level 2 is typically described as the preferred EV charging method for both private and publicly available facilities. The SAE J1772™ connector is suitable for load current as high as 80 amps AC (100 amp rated circuit). Size overcurrent protection for EVSE to 125% of the EVSE nameplate continuous output rating.
Figure 5.3.2 Level 2 individual circuit requirements

The SAE J1772™ connector is used for both AC Level 1 and 2 charging. When connected, the vehicle charger will communicate with the EVSE to identify the circuit rating and adjust the charge to the battery accordingly.

5.3.3 Fast Charging DC

Fast charging DC uses three-phase 208V, 480V or 600V circuits and typically takes less than one hour to complete. For chargers rated up to 30kW, three-phase 208 VAC or 480VAC is suitable, and three-phase 480VAC is suitable for chargers rated greater than 30kW. This energy transfer method utilizes dedicated electric vehicle supply equipment capable of replenishing more than half of the capacity of an EV battery in as little as ten minutes.
Figure 5.3.3 Fast charging DC individual circuit requirements

For fast charging DC, the conversion from AC to DC power occurs off-board the EV, so that DC power is delivered directly to the vehicle. The vehicle’s on-board battery management system controls the off-board charger to deliver DC directly to the battery. Fast charging DC is typically used for fleet vehicle and other commercial EV applications.

5.4 Conductive and Inductive EV Charger Technologies

Two available technologies can be used to connect EVs to EVSE, conductive charging using the SAE J1772™ standard, and inductive charging using the SAE J1773 standard. Both are available for all levels of charging, but no manufacturers currently use inductive coupler charging for commercially available EVs.

Conductive and inductive charge connectors are different and are not interchangeable. An EV that uses conductive charging cannot be connected to an inductive charge connector. Each technology has its strengths and weaknesses.

While there are differences between inductive and conductive EV charging from a safety standpoint, inductive coupler charging is a less efficient and more complex charging means than conductive charging. Consequently, inductive coupler charging is typically a more expensive method of charging EVs.

Recently, hands-free inductive charging has become available where a model-specific charge adapter is mounted on the EV and the EVSE is equipped with a floor-mounted magnetic charging block located close to where the EV is parked and where the EV-mounted charge adapter is located. When the EV is parked, power is delivered to the EV through magnetic induction between the floor-mounted charging block and the EV-
mounted charge adapter. Unlike using the J1773 inductive charge coupling, no intervention is required to initiate EV charging beyond parking the EV with the charge adapter in close proximity to the floor-mounted magnetic charging block.

5.4.1 Conductive Charging

Conductive charging uses physically connecting contacts, similar to methods used by common electric appliances. It is the method used by most on-board chargers, or systems that place the charging circuitry and control on the vehicle. The connector for these systems is usually a pin and sleeve type connector.

5.4.2 Inductive Technologies

Inductive charging systems transfer energy to the EV by magnetically coupling a primary winding on the supply side to a secondary winding on the vehicle side of the connector. Current flows through the primary inductor coil, or paddle, and the resulting magnetic flux induces an alternating current through the magnetic field and across the secondary coil, completing the circuit. The AC current is converted to DC for storage in the vehicle battery.

Inductive chargers keep most of the charging circuitry and controls in an off-board charging stand, and communicate with the battery and vehicle electronics via infrared or radio frequencies.

While SAE J1773, the Inductive Charge Coupler, remains an active standard, no EV manufacturers are currently using inductive battery charging in commercially available EVs.

5.5 Communication and Data Requirements

Communication between the EV and the EVSE is necessary for data transfer, safety and control. The SAE J1772TM standard requires additional contacts in the charge connector along with communication over power line. Data communication can be provided for point-of-sale (POS) options such as card readers, radio frequency identification (RFID), and EV charging meters.

When installing new EVSE, it may be useful to include Internet or some other communication capability. Additional communication options include wireless, cellular, infrared and radio frequency. Communications abilities will allow data collection, such as frequency of charging and duration of use. Customers may be able to track the charging progress of their EVs through wireless communication via smart phone applications. Consult the EVSE supply vendor for data collection and communications options and minimum requirements.
5.5.1 Communication Between the EV and EVSE

Communication between the EV and the EVSE may include:
- Vehicle code identification (e.g. for assignment of the vehicle to the account of the owner at the power supplier).
- Vehicle charging system identification (what kind of charging is required).
- Vehicle connection interlock to ensure the adequate electrical connection between the EV and the EVSE.
- Accomplishment of personal protection.
- Acceptance of interlocks to initiate and to terminate the charging process.
- Signal for interlocking of charging system.
- Signal for activation of the ventilation system, if required.
- Activation of the EV immobilizer system.
- Service ground continuity monitoring.

5.5.2 Communication Between the EV and the Power Supplier

Communication between the EV and the Power Supplier may include:
- Controlled supply of power.
- Provision of different rates.
- Billing of delivered power.
- Controlled use of vehicle battery as a power reservoir (vehicle-to-grid, V2G).

5.6 EVSE Equipment and Siting Requirements

EVSE facilities must comply with all local, state, and national codes and regulations. EVSE installations typically require a permit. Check with the local planning department and review local building codes for construction details for EVSE before starting work. Keep in mind that the local electric utility company will not energize a new meter without an approved building inspection.

EVSE must be certified (listed) and marked by a nationally recognized testing laboratory (NRTL), in accordance with NEC Article 625.

The EVSE cord may provide a maximum of 25 feet of flexibility from the EVSE location to the EV inlet, unless equipped with a cable management system, in accordance with NEC Article 625.

For charging facilities located with public access, an extended EV cord may present a tripping hazard. Locate EVSE in areas with minimum pedestrian traffic. An alternative would be to consider installation of an overhead support or trolley system to allow the cord to hang above the vehicle in the general location of the EV inlet.
If the EV batteries require ventilation during indoor charging, the EVSE is required to energize a properly sized ventilation system in accordance with NEC Article 625. Once the charge connector is attached to the EV inlet, the EVSE will communicate with the EV to determine whether ventilation is required. If ventilation is required but no ventilation system exists, the EVSE will not charge the vehicle.

5.6.1 Electrical Load Calculations

Perform calculations to determine the minimum ampacity of branch circuits, feeders and services that supply EVSE, associated ventilation systems, where required, in accordance with NEC Article 220, and referring to the load calculation examples found in Annex D for dwelling units and other than dwelling units.

For existing facilities, conduct a site visit, inventory electrical equipment, and interview the facility occupants to determine the cyclical daily and seasonal loading of the facility. When available, review a minimum of 12 months of electric utility bills to determine the maximum demand for incorporation into load calculations.

AC Level 1 and AC Level 2 EVSE are considered continuous loads with the maximum current expected to continue for 3 hours or more. Load calculations and sizing of branch circuit, feeder, and service entrance conductors and overcurrent protective devices for EVSE and associated ventilation systems, where required, must be sized for 125% of the maximum current in accordance with the NEC.

For commercial installations, consideration for future expansion and additional EVSE should be included in load calculations. Involve electrical utility planners early in the process when planning EVSE for fleet applications.

5.6.2 Site Selection and Preparation

The EVSE location should be easy to find and conveniently accessed. In a very large parking lot, such as at a shopping mall, it may be more beneficial to place EVSE at several locations, rather than to place all EVSE in one location.

Determine locations for EVSE that allow for proper layout of the charging equipment and adequate access space for EVs. Regardless of the type of EVs in use, allow sufficient space for vehicles as well as the personnel operating them. If the site selected for installation of EVSE is susceptible to water runoff from adjacent areas, roof drainage or is not level, a concrete equipment pad may be required.

Design and install concrete pads for EVSE and EVs in accordance with manufacturer recommendations and in accordance with all applicable codes and standards.

Provide curbs, wheelstops and setbacks to properly position the EV with respect to the
EVSE, to protect the EVSE from the EV, and to reduce the likelihood that an outstretched charging cord could present a tripping hazard. Consider ease of access to the charger, mobility of users and foot traffic in the area when installing curbs, wheel stops, and setbacks.

Ensure that EV charging spaces are not located near potential hazards. EVSE should not be installed near explosive material, flammable vapors, liquids and gases, combustible dust or fibers, or materials that ignite spontaneously on contact with air. NEC Articles 500 to 516 describe equipment and procedures for installation of electrical systems in hazardous locations. If EVSE is installed in an enclosed area, ensure that ventilation requirements are met. See Sections 5.2 and 5.3.4.

The NEC and locally adopted electrical codes typically require special signs for EVSE. Signs may also be needed to designate parking spaces for EV-use only. These signs should be positioned high enough to be seen over parked vehicles.

Additional site selection considerations include:

- Determine the distance from EVSE to vehicle charge inlet to avoid tripping hazard.
- Locate the EVSE in close proximity to available AC power supply to minimize voltage drop.
- Determine whether the existing electrical service is adequate for the additional and future projected loads, or that upgrades or a new service is required.
- Determine the local electric utility metering requirements, such as requiring a separate utility revenue meter for EV charging.
- Provide adequate space and accessibility to meet ADA requirements (if applicable).
- Consider vandalism, lighting, signage and safety.
- Identify potential nearby hazards or hazardous materials.
- Review the site for running water, standing water and flooding. Permits for construction of facilities, including EV charging stations, must include a review to determine whether the site is located in a flood prone area.
- Check the EV manufacturer’s recommended operating and charging temperature range for the batteries and site the EVSE accordingly, such as providing shade for outdoor locations or ventilation for indoor locations.

Where the existing electrical service has insufficient capacity, consider a load control strategy to manage the charging load within the capacity of the electrical service, such as off-peak charging, rather than upgrading the service to accommodate increased building load from EV charging. Many AC Level 2 EVSE suppliers provide controls in the EVSE to enable charging at programmable times to take advantage of off-peak power pricing. If not, a time clock or timer device may be installed in the circuit to control charging times.

The EVSE location should balance safety, by minimizing the tripping hazard from the charge cord, with convenience and location relative to the AC power supply to minimize
cost.

The following regulatory and code issues affect the placement of EVSE:

- Indoor EV charging receptacles/coupler must be stored or located between 18 and 48 inches above the floor in accordance with NEC Article 625.
- Outdoor EV charging receptacles/coupler must be stored or located between 24 and 48 inches above the parking surface in accordance with NEC Article 625.
- When EVSE is installed in a hazardous (classified) location, the EVSE installation must comply with NEC Articles 500 through 516 (NEC Article 625). It is recommended EVSE be installed in non-hazardous locations that do not contain any explosive materials, flammable vapors, liquids and gases, combustible dust or fibers, and materials that ignite spontaneously on contact with air.

EVSE located outdoors should be properly designed for exterior use. Consideration must be given to precipitation and temperature extremes. In geographic areas that experience high precipitation, pooling of water may be a concern. Freezing temperatures can also create an issue for cords freezing to the parking surface and cord support should be considered.

In addition, install EVSE in accordance with EV and EVSE manufacturer’s instructions to ensure safe and proper equipment operation.

5.6.3 Commercial Fleet Lots

Commercial fleets make up the highest population of EVs at the present time. Electrical service requirements will be much higher than residential or multi-family installations and can have a significant impact on electrical usage and on the utility. Consideration for future expansion and additional EVSE should be included in load calculations. Electrical utility planners should be involved early in the fleet planning process.

The EV fleet manager will be interested in charging vehicles offpeak, or during times other than peak electrical load demand periods. Flood prone area restrictions must be considered as well as issues of standing water. Large parking lots frequently have low spots that accumulate water. Although EVSE contains proper protection devices, such as a Personal Protection System to provide protection against electric shock, operating the EVSE in standing water is not recommended.

Fleet managers must also be aware of other equipment to be stored in the vicinity of the EVSE. It is important that a hazardous environment, such as a vehicle fueling station, does not already exist in the area planned for EVSE installation.

Locate EVSE such that other activities within the fleet facility are accommodated. It is advisable to locate the station in a low-traffic area of the facility. EVs may be required to
remain parked for several hours to complete the charging cycle and could block the movement of other fleet vehicles.

Cords and cables associated with charging equipment should not cross sidewalks or pedestrian traffic patterns.

Some EV batteries have operating and charging temperature limits. In extreme heat or extreme cold climate conditions, it may be necessary to site EVSE in a shaded area or an enclosed space.

To avoid vehicles from inadvertently driving into the EVSE, provide curbs, wheel stops, and setbacks. Consider user access and mobility issues when installing equipment.

Trouble reporting can be very important in public charging areas. Each public charging area should be equipped with a method for notifying the individual or organization responsible for maintaining and repairing the EVSE of trouble with the equipment, which may be a normal business telephone number or a service that monitors many public-charging locations, and will require communications, which may be wireless. At a minimum, a sign may be posted at the EVSE location with directions for making public comments.

5.7 Electric Utility Interconnection Requirements

Contact the local electrical utility company to determine interconnection requirements. Specific requirements may include electric utility policies along with regulatory and statutory requirements. Discussions should include:

- Power capacity of the facility.
- Metering requirements, such as a second utility revenue meter.
- Rate structure, such as time-of-use (TOU), demand response (DR), real time pricing (RTP), vehicle-to-grid (V3G), or off-peak EV charging.
- Interconnection requirements for vehicle-to-grid (V2G) distributed generation.
- Smart grid applications and EV charging control.

6. Installation

6.1 General

The installation requirements for EVSE varies from manufacturer to manufacturer. Install EVSE in accordance with manufacturer recommendations and in accordance with applicable local, state and federal codes and regulations.

If trenching or boring, consider providing a minimum of one additional raceway for future growth, expansion or upgrade.
Consider providing a minimum of one spare power conductor for single-phase 208 VAC and 240 VAC circuits for future use as a neutral conductor, if needed.

Connect the EVSE to either the branch circuit or feeder equipment grounding conductor in accordance with NEC Article 250.

Mount EVSE such that wall mounted outlets are not more than 48” above the ground. Provide a minimum of 24 inches clearance around all sides of outdoor pedestal-mounted EVSE.

Provide bollards, curbs or wheel stops to protect EVSE from vehicles.

Anchor EVSE to surfaces in accordance with manufacturer recommendations. For EVSE mounted to concrete surfaces, provide J-Bolts cast in concrete or drill holes for concrete anchors. Mark the mounting bolt pattern on the mounting surface using the manufacturer’s template. Drill pilot holes in the mounting surface. Follow the manufacturer’s recommendations for depth and diameter of pilot holes. Keep in mind that different materials, such as steel, concrete, wood, etc., will require different fasteners and different types of pilot holes.

Use not less than the manufacturer’s recommended minimum number of fasteners to secure the EVSE base plate to concrete pads. Install the manufacturer’s recommended fasteners and mounting hardware, and torque to manufacturer recommendations.

Use the manufacturer recommended raceway entry locations or conduit knockouts for EVSE. When provided by the manufacturer, select and remove the appropriate sized conduit knockouts, considering raceway diameter.

Install raceways and tighten connectors and fittings. Install cables and conductors and connect and terminate in accordance with manufacturer recommendations. Provide cable and conductor sizes and types in accordance with manufacturer recommendations.

Branch circuit, feeder and service conductors, and overcurrent protective devices for EVSE and for ventilation systems, where required, must be sized not less than 125% of the maximum rated load current or the nameplate value, whichever is greater, or comply with the maximum ampacity and overcurrent protection indicated on the equipment, in accordance with NEC requirements for supplying continuous loads. Install, insulate and coil a spare phase conductor for future use.

Provide a disconnecting means that is readily accessible from EVSE for circuits rated 60A and higher in accordance with NEC requirements. Connect the branch circuit, feeder or service to the EVSE meter/disconnect terminals.

6.1.1 Free Standing EVSE
If a raised concrete pad is required, size the pad in accordance with manufacturer recommendations. Typically, the concrete pad is sized such that the EVSE is placed such that the front edge is flush with the front edge of the concrete pad, with a minimum of 6 inches of the pad extending out from beneath the other three sides.

Attach mounting straps or angle brackets to secure the EVSE in place using the provided hardware. Use manufacturer recommended hardware, anchors and fasteners when replacements are required.

When required, install a grounding electrode and connect to the branch circuit, feeder or service equipment grounding conductor in accordance with NEC Article 250.

Figure 6.1.1.2 Auxiliary electrode installations must connect to the supply circuit equipment grounding conductor in addition to the frame of the equipment.

6.1.2 RFID or Antenna and Parking Bumper or Wheelstop Installation

Where EVSE has provisions for radio frequency identification (RFID) tag sensing antennae installed in parking bumpers or wheelstops, route and install raceways and locate PVC boxes and enclosures in accordance with manufacturer's instructions.
Measure each parking bumper or wheelstop and its openings to ensure the proper fit of conduits, boxes and enclosures. Make sure that the conduits, boxes and enclosures are oriented in accordance with manufacturer's instructions.

Install plastic trim covers and their securing lanyards, if required, before placing the parking bumper or wheelstop over the conduit/enclosure assembly.

Using the lifting rings provided, squarely place each parking bumper or wheelstop over the conduit and enclosure. Insert the lifting rings through the bumper or wheelstop mounting holes and thread them into the embedded nut.

Use a properly sized forklift, lifting rings and proper lifting procedures when installing bumpers or wheelstops. Do not use a hand truck or similar device for lifting bumpers or wheelstops.

After final positioning of the bumpers or wheelstops parallel to the enclosure, anchor bumpers and wheelstops in place by using the anchor bolts provided. Use the correct hardware and follow the manufacturer's instructions.

Pull the EV sensing antenna cables through conduits and into boxes and enclosures. Locate any cable slack inside the EVSE gutter space or junction box. Label antenna cables where more than one cable is pulled through a raceway. Connect antenna cables to the appropriate charge port in the EVSE. Label antenna cables in accordance with the manufacturer’s numbering convention.

Connect all antenna components to each of the antenna cables and place each antenna inside the appropriate PVC enclosures, orientated in accordance with the manufacturer’s instructions. Secure antennae with the screws and hardware provided.

Install box and enclosure lids and install trim covers on bumper and wheelstop openings.

Mount the tag assembly onto the vehicle structural member in accordance with manufacturer recommendations. Affix the radio frequency identification (RFID) tag to the underside of each EV that will be charged at RFID-enabled EVSE. Install the RFID tag on a structural member of the EV situated approximately above the RF antenna located in the parking bumper or wheelstop. Select a structural member no more than 13 inches above the top of the parking bumper or wheelstop. Insulate the RFID tag from EV metal surfaces by mounting it on a 3/4” thick piece of plastic (nylon, EPDM or polypropylene) with a suitable adhesive.

The RFID tag stores EV, battery configuration and charge cycle history in a semiconductor chip. Because it contains unique information for that specific vehicle, each RFID tag must remain with the EV to which it is attached. A vehicle without an RFID tag will not be recognized by the EVSE and will not be charged.
6.2 EVSE Start-up and Commissioning

Start up EVSE in accordance with manufacturer recommendations. See Section 5.1 for safety recommendations.

Follow the manufacturer’s instructions for properly parking EVs at EVSE, connecting the charge connector, and interpreting the user interface display and indicator lights during the charging process. Remove the EV charge connector by the housing. Do not remove the charge connector from the EV inlet by pulling the cord.

When possible, test the EVSE by charging a compatible electric vehicle with suitable ratings, couplers, connectors, and equipment.

7. Maintenance

7.1 General

Clean EVSE in accordance with manufacturer recommendations using recommended materials and methods. Follow the safety recommendations found in Section 5.1.

Generally, use a soft damp cloth with a mild detergent to wipe the exterior of the EVSE with main power service off. For EVSE with stainless steel surfaces, use standard stainless steel polish only in accordance with manufacturer recommendations.

Check all usable parts for wear, and conduct periodic inspections to ensure that all parts remain in good working order. Check that communications systems are functioning properly, and that lamps are illuminated and working properly. Replace burned-out lamps, if so equipped, in accordance with manufacturer’s instructions. Check for damage and vandalism. Repair damage and vandalism in accordance with manufacturer recommendations.

Inspect the charge connector, plugs, receptacles, cords, cables, strain relief clamps, etc., for evidence of damage before each use. Shake charge connectors, listening for sounds such as rattles that can indicate loose components. Check connectors and inlets for tightness. Replace SAE connectors that are misapplied, improperly installed, damaged, worn, that show signs of overheating or discoloration, or that show any sign of alterations of a blade or connection slot.

Inspect cables and conductors for signs of wear, abrasion, damaged or worn insulation, etc. Verify that EV coupler and connector cables are securely fastened to boxes. Verify that appropriate coverplates and access panels are installed and secure, and that panels and covers are in contact with the finished surface on all edges.
Shut off, do not use, and replace damaged, discolored, disfigured, modified, hot, sparking, popping, or otherwise suspect EVSE couplers or plugs, or if ozone is detected in their immediate vicinity.
Annex A: Product Regulations, Codes and Standards

A.1 General

Electric vehicle supply equipment (EVSE) safety requirements have been incorporated into various standards, including industry and equipment standards such as the Society of Automotive Engineers (SAE) and Nationally Recognized Testing Laboratories (NRTL), accessibility standards such as Americans with Disabilities Act (ADA), and safety and installation standards such as NFPA and the NEC®, and other local and state building codes.

Additionally, EVSE can be used to attain credit towards certification under the Leadership in Energy and Environmental Design (LEED) program in accordance with the U. S. Green Building Council requirements.

A.2 Society of Automotive Engineers (SAE) Standards

The Society of Automotive Engineers (SAE) provides standards and recommendations for equipment, materials and components related to vehicles. The following current SAE standards form a basis of EVSE design and quality:

- SAE J1772™ SAE Electric Vehicle Conductive Charge Coupler.
- SAE J1773 SAE Electric Vehicle Inductively Coupled Charging.
- SAE J2293 Energy Transfer System for Electric Vehicles - Part 2, Communication Requirements and Network Architecture.
- SAE J2847 Communication Between Plug-In Vehicles and the Utility Grid.
- SAE J2836 Use Cases for Communication Between Plug-in Vehicles and the Utility Grid.

SAE J1772™ defines a common EV conductive charging system architecture. The Standard describes the functional and dimensional specifications for the EV coupler (inlet and connector), along with the communication protocol and performance requirements. The SAE J1772™ conductive charge coupler is round, 43 mm in diameter, and contains five contacts or pins:

- Two pins for power (AC line 1 and AC line 2/neutral)
- One pin for ground
- One pin for signals related to the amount of current allowed for the particular vehicle model being charged
- One pin for preventing the car from being moved while charging is under way.
The SAE J1772™ connector will support communication over power lines to identify the vehicle and control charging. When connected, the vehicle charger will communicate with the EVSE to identify the circuit rating (voltage and amperage) and will adjust to the battery accordingly. Thus, an EV that is capable of receiving 20 Amperes will receive that current, even when connected to a 40-Ampere-rated circuit.

The SAE J1772™ connector is designed to withstand up to 10,000 connection and disconnection cycles, along with exposure to all kinds of elements, dust, salt, and water, and is able to withstand a vehicle driving over it. With one connection/disconnection cycle daily, the average life expectancy of the SAE J1772™ connector is estimated to exceed 27 years.

The SAE J1772™ coupler is capable of conducting single-phase power up to 240VAC and up to 80 amperes to an EV.

Additional SAE documents related to EV and EVSE are under development.

A.3 Nationally-Recognized Testing Laboratory (NRTL) Listing

The Nationally Recognized Testing Laboratories (NRTL) program is a certification program operated by the Occupational Safety and Health Administration to certify organizations that provide testing and certification of equipment that complies with relevant product safety standards for products used in the workplace.

The following Underwriter's Laboratories (UL) standards form a basis for certifying EVSE:

- UL 2202 Electric Vehicle (EV) Charging System Equipment
- UL 2251 Standard for Safety of Plugs, Receptacles and Couplers for EVs
- UL 2594, Outline of Investigation for Electric Vehicle Supply Equipment.

UL Subject 2594 covers EVSE rated a maximum of 250 VAC, with a frequency of 60 Hz, and intended to provide power to an EV with an onboard charging unit. The products covered by UL 2594 include EV Power Outlets, EV cord sets and AC Level 1 and 2 EVSE.

Equipment that successfully completes the testing is “certified,” “approved” or “listed” as meeting the requirements in the applicable product standard. The local Authority Having Jurisdiction can verify that components are approved, or listed and labeled. According to NEC, approved is defined as being acceptable to the authority having jurisdiction (AHJ).

All electrical materials and equipment associated with EVSE shall be listed
A.4 Americans with Disabilities Act (ADA) Requirements

Generally, ADA parking requirements apply to EVs and EVSE.

The federal Americans with Disabilities Act (ADA), state revised statutes, and state structural Codes may identify requirements for location, design, and number of parking spaces for persons with disabilities. Such regulations contain requirements for the quantity, location, design and installation of:

- Number of required accessible parking stalls, including van-accessible stalls
- Connector and receptacle heights
- Special curb cutouts
- Parking and EVSE access
- Signage and pavement striping and markings

To enable persons with disabilities to have access to EVSE, EV connectors should be stored or located within an accessible reach, and access must be provided around the vehicle in order to connect the connector to the EV inlet. Whether indoors or outdoors, this means that the EV connector should be stored or located at a height of not more than 4 feet and not less than 24 inches above the parking surface.

EV parking should be provided in premium locations similar to accessible locations. Because stalls containing EVSE may be dedicated for EV use only, the accessible parking stalls should be in addition to those required by local building codes for accessible parking.

For new construction, an accessible path from the EVSE to other services provided at the site is required. For new and existing parking facilities, it is important that EVSE locations permit adequate space (a minimum of 36 inches) for a wheelchair to pass parking bumpers and wheelstops.

A.5 State and Local Codes and Ordinances

Local jurisdictions can either adopt National or State codes, or can enact more stringent building regulations. Check with local building code officials to determine the exact Codes in force prior to installing EVSE.

A.5.1 National Electrical Code® (NEC®)

NFPA 70, National Electrical Code, (NEC), provides requirements that provide the practical safeguarding of persons and property arising from the use of electricity. In addition to the general requirements in Chapters 1 through 4 of the NEC, Article 625 governs the specific design, construction and installation requirements for EVSE.
The NEC is provided as purely advisory to regulatory bodies in the interest of life and property protection. Adoption of the NEC into law is carried out by local jurisdictions and adoption of new NEC versions may follow several years from the most recent version of NFPA 70 (NEC).

A.6 Leadership in Energy and Environmental Design (LEED)

Leadership in Energy and Environmental Design (LEED) was developed by the U.S. Green Building Council to provide standards for environmentally sustainable construction and facility operations. LEED requires a study of CO$_2$ emissions and encourages the use of alternative fuel vehicles through monetary incentives or preferred parking.

LEED provides credits for installing EVSE and suggests certain percentages of parking be devoted to alternative fuel vehicles. These locations will apply to employees, as well as public visitors using the facility. Companies interested in being LEED-certified are excellent sites for publicly available EVSE. Available LEED credits for installing EVSE include:

- LEED for New Construction Sustainable Sites Credit 4.3 provides three (3) available points towards LEED accreditation if 5% of parking is made available for low-emission & fuel efficient vehicles, such as EVs.

- LEED for Existing Buildings Sustainable Site Credit 4.0 provide three (3) to fifteen (15) available points for the reduction in conventional commuting trips from 10-75%.
Annex B: Reference Standards